from Crypto.Util.number import * from gmpy2 import * n = 8361361624563191168612863710516449028280757632934603412143152925186847721821552879338608951120157631182699762833743097837368740526055736516080136520584848113137087581886426335191207688807063024096128001406698217998816782335655663803544853496060418931569545571397849643826584234431049002394772877263603049736723071392989824939202362631409164434715938662038795641314189628730614978217987868150651491343161526447894569241770090377633602058561239329450046036247193745885174295365633411482121644408648089046016960479100220850953009927778950304754339013541019536413880264074456433907671670049288317945540495496615531150916647050158936010095037412334662561046016163777575736952349827380039938526168715655649566952708788485104126900723003264019513888897942175890007711026288941687256962012799264387545892832762304320287592575602683673845399984039272350929803217492617502601005613778976109701842829008365226259492848134417818535629827769342262020775115695472218876430557026471282526042545195944063078523279341459199475911203966762751381334277716236740637021416311325243028569997303341317394525345879188523948991698489667794912052436245063998637376874151553809424581376068719814532246179297851206862505952437301253313660876231136285877214949094995458997630235764635059528016149006613720287102941868517244509854875672887445099733909912598895743707420454623997740143407206090319567531144126090072331 e = 65537 c = 990174418341944658163682355081485155265287928299806085314916265580657672513493698560580484907432207730887132062242640756706695937403268682912083148568866147011247510439837340945334451110125182595397920602074775022416454918954623612449584637584716343806255917090525904201284852578834232447821716829253065610989317909188784426328951520866152936279891872183954439348449359491526360671152193735260099077198986264364568046834399064514350538329990985131052947670063605611113730246128926850242471820709957158609175376867993700411738314237400038584470826914946434498322430741797570259936266226325667814521838420733061335969071245580657187544161772619889518845348639672820212709030227999963744593715194928502606910452777687735614033404646237092067644786266390652682476817862879933305687452549301456541574678459748029511685529779653056108795644495442515066731075232130730326258404497646551885443146629498236191794065050199535063169471112533284663197357635908054343683637354352034115772227442563180462771041527246803861110504563589660801224223152060573760388045791699221007556911597792387829416892037414283131499832672222157450742460666013331962249415807439258417736128976044272555922344342725850924271905056434303543500959556998454661274520986141613977331669376614647269667276594163516040422089616099849315644424644920145900066426839607058422686565517159251903275091124418838917480242517812783383 R = Zmod(n)["x"] whileTrue: Q = R.quo(R.random_element(7)) p = gcd(ZZ(list(Q.random_element() ^ n)[1]),n) if p!=1: q = sum([p**i for i inrange(7)]) r=n//(p*q) assert n==p*q*r break phi=(p-1)*(q-1)*(r -1) d = pow(e,-1,phi) m = pow(c,d,n) print(long_to_bytes(int(m)))
创建n的多项式环循环查找n的因数
得到p,q,r后计算phi解flag
SuperbRSA
共模攻击,但e1,e2 不互素,套脚本
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
from Crypto.Util.number import * from gmpy2 import * n= 19006830358118902392432453595802675566730850352890246995920642811967821259388009049803513102750594524106471709641202019832682438027312468849299985832675191795417160553379580813410722359089872519372049229233732405993062464286888889084640878784209014165871696882564834896322508054231777967011195636564463806270998326936161449009988434249178477100127347406759932149010712091376183710135615375272671888541233275415737155953323133439644529709898791881795186775830217884663044495979067807418758455237701315019683802437323177125493076113419739827430282311018083976114158159925450746712064639569301925672742186294237113199023 c1= 276245243658976720066605903875366763552720328374098965164676247771817997950424168480909517684516498439306387133611184795758628248588201187138612090081389226321683486308199743311842513053259894661221013008371261704678716150646764446208833447643781574516045641493770778735363586857160147826684394417412837449465273160781074676966630398315417741542529612480836572205781076576325382832502694868883931680720558621770570349864399879523171995953720198118660355479626037129047327185224203109006251809257919143284157354935005710902589809259500117996982503679601132486140677013625335552533104471327456798955341220640782369529 c2= 11734019659226247713821792108026989060106712358397514827024912309860741729438494689480531875833287268454669859568719053896346471360750027952226633173559594064466850413737504267807599435679616522026241111887294138123201104718849744300769676961585732810579953221056338076885840743126397063074940281522137794340822594577352361616598702143477379145284687427705913831885493512616944504612474278405909277188118896882441812469679494459216431405139478548192152811441169176134750079073317011232934250365454908280676079801770043968006983848495835089055956722848080915898151352242215210071011331098761828031786300276771001839021 e1=55 e2=200
g,x,y=gmpy2.gcdext(e1,e2) m1=pow(c1,x,n)*pow(c2,y,n)%n x = gmpy2.gcd(e1,e2) k = 0 while1: m11 = m1 + k*n m,s = gmpy2.iroot(m11,x) if s: print(long_to_bytes(m)) break k += 1
easyLattice
格密码 NTRU 由于f的bit大,需要给p,h加上大系数k
1 2 3 4 5 6 7
from Crypto.Util.number import * h = 9848463356094730516607732957888686710609147955724620108704251779566910519170690198684628685762596232124613115691882688827918489297122319416081019121038443 p = 11403618200995593428747663693860532026261161211931726381922677499906885834766955987247477478421850280928508004160386000301268285541073474589048412962888947 M = matrix([[1,(2**245)*h],[0,(2**245)*p]]) f,g = M.LLL()[0] flag = abs(f) print(long_to_bytes(flag))